Mathematical Solutions.........

Regression analysis

Equation graph plotter

Desktop calculators

Conversion utilities

Generic applications


Independent, non-profitable software & technology developments of Dr. Larry Nylund

Regression Analysis - Graphing - Scientific Calculator - Unit Conversion

Scientific calculator - ScienCalc v1.3.56 

Find values for your equations in seconds
ScienCalc gives students, teachers, scientists and engineers the power to find values for even the most complex equation set. You can build equation set, which can include a wide array of linear and nonlinear models for any application:

  • Linear equations
  • Polynomial and rational equations
  • Nonlinear exponential, logarithmic and power equations
  • Pre-defined mathematical and physical constants

Understandable and convenient interface
A flexible work area lets you type in your equations directly. It is as simple as a regular text editor. Annotate, edit and repeat your calculations in the work area. You can also paste your equations into the editor panel.
History of all calculations done during a session can be viewed. Print your work for later use. Comprehensive online help is easily accessed within the program.

How to work with the program.

1. First, you must enter a formula into the expression-editor.

You can use next operations (as expression syntax):

Operators: + - * / and ( ) [parentheses]
Built-in Functions... [Unless otherwise indicated, all functions take a single numeric argument, enclosed in parentheses after the name of the function]
Algebraic: Abs, Square, Sqrt, Power(x;z) [= x raised to power of z; Use semicolor as the list-separator]
Transcendental: Exp, Ln [natural], LogBase10, LogBase2, LogBaseN(Base;x)
Trigonometric: Sin, Cos, Tan, Cot, Sec, Csc
Other Trig: ArcSin, ArcCos, ArcTan, ArcCot, ArcSec, ArcCsc, Coversine, Exsecans, Haversine, Versine
Hyperbolic: SinH, CosH, TanH, CotH, SecH, CscH
Other Hyp: ArcSinH, ArcCosH, ArcTanH, ArcCotH, ArcSecH, ArcCscH
Miscellaneous: Pythag(v;h) [Pythagoras, where v and h denote vertical and horizontal lengths, respectively]
Constants:{Mathematical constants}
Pi [= 3.1415926535897932384626433832795] {Pi}
PiOn2 [= 1.5707963267948966192313216916398] {Pi / 2}
PiOn3 [= 1.0471975511965977461542144610932] { Pi / 3}
PiOn4 [= 0.78539816339744830961566084581988] {Pi / 4}
Deg [= 57.295779513082320876798154814114] {180 / Pi}
Bernstein [= 0.2801694990238691330364364912307] {Bernstein constant}
Cbrt2 [= 1.2599210498948731647672106072782] {CubeRoot(2)}
Cbrt3 [= 1.4422495703074083823216383107801] {CubeRoot(3)}
Cbrt10 [= 2.1544346900318837217592935665194] {CubeRoot(10)}
Cbrt100 [= 4.6415888336127788924100763509194] {CubeRoot(100)}
CbrtPi [= 1.4645918875615232630201425272638] {CubeRoot(PI)}
Catalan [= 0.9159655941772190150546035149324] {Catalan constant}
Sqrt2 [= 1.4142135623730950488016887242097] {Sqrt(2)}
Sqrt3 [= 1.7320508075688772935274463415059] {Sqrt(3)}
Sqrt5 [= 2.2360679774997896964091736687313] {Sqrt(5)}
Sqrt10 [= 3.1622776601683793319988935444327] {Sqrt(10)}
SqrtPi [= 1.7724538509055160272981674833411] {Sqrt(Pi)}
Sqrt2Pi [= 2.506628274631000502415765284811] {Sqrt(2 * Pi)}
TwoPi [= 6.283185307179586476925286766559] {2 * Pi}
ThreePi [= 9.4247779607693797153879301498385] {3 * Pi}
Ln2 [= 0.69314718055994530941723212145818] {Ln(2)}
Ln10 [= 2.3025850929940456840179914546844] {Ln(10)}
LnPi [= 1.1447298858494001741434273513531] {Ln(Pi)}
Log2 [= 0.30102999566398119521373889472449] {LogBase10(2)}
Log3 [= 0.47712125471966243729502790325512] {LogBase10(3)}
LogPi [= 0.4971498726941338543512682882909] {LogBase10(Pi)}
LogNConst [= 0.43429448190325182765112891891661] {LogBase10(NConst)}
NConst [= 2.7182818284590452353602874713527] {Natural constant; exp(1)}
hLn2Pi [= 0.91893853320467274178032973640562] {Ln(2*Pi)/2}
inv2Pi [= 0.159154943091895] {0.5 / Pi}
TwoToPower63 [= 9223372036854775808.0] {263}
GoldenMean [= 1.618033988749894848204586834365638] {GoldenMean}
EulerMascheroni [= 0.5772156649015328606065120900824] {Euler GAMMA}
Constants:{Certain physical constants expressed in SI units}
Amu [= 1.6606E-27] {Atomic mass unit constant (kg)}
Avog [= 6.0225E23] {Avogadro constant (mol-1)}
Boltz [= 1.3805E-23] {Boltzmann constant (J K-1)}
ECharge [= 1.602189E-19] {Electron charge (C)}
EMass [= 9.11E-31] {Electron mass (kg)}
EVolt [= 1.602E-14] {Electron volt (J)}
Farad [= 96500] {Faraday constant (C mol-1)}
Gas [= 8.314] {Gas constant (J mol-1 K-1)}
Neutron [= 1.6748E-27] {Neutron mass (kg)}
Planck [= 6.626E-34] {Planck constant (Js)}
Proton [= 1.6725E-27] {Proton mass (kg)}
Light [= 2.9979E8] {Speed of light (m s-1)}
Gravity [= 9.80665] {Gravitational acceleration (m s-2)}
Pressure [= 101325] {Normal atmospheric pressure (N m-2)}
Stefan [= 5.67032E-8] {Stefan-Boltzmann constant (W m-2 K-4)}
Bohr [= 5.2917706E-11] {Bohr radius (m)}

Note: Function and constant names are not case-sensitive. For example, Exp is the same as EXP or exp. The variable, which is the letter "x", is also not case-sensitive.

Note: Text after proper mathematical expression, will be ignored by the compiler. You can use this feature to comment your equation set.

Note: In particular, you cannot use ^ for exponentiation, you must use the Power function instead.

Note: All the algebraic, trigonometric, hyperbolic and transcendental routines map directly to Intel 80387 FPU floating point machine instructions.

Note: ScienCalc handles resulting floating-point values between 2.225E-308 (2-1022) and 1.797E+308 (21024).

Note: As operands you can use numeric constants in any form (2, 2.0, 2e5, 2e-3) with decimal delimiter "period" or "comma", depending on your computer system configuration.

2. Example of formula: (2.0e-3*x) + square(x) + power(x;3) + power(2.55;4) + logbaseN(4;6.25)
Thus! If your computer system configuration uses "comma" as decimal delimiter/separator, 2.55 in the above example must be 2,55
Example of formula: (2,0e-3*x) + square(x) + power(x;3) + power(2,55;4) + logbaseN(4;6,25)

3. Edit-box "X value": Assign value to variable "x".

4. Click the "Compute" button to perform calculation.

The software presented on these pages are for Save-the-Children charity.

Copyright © 2024 Larry Nylund
Institute of Mathematics and Statistics
Helsinki, Finland
North Europe
All Rights Reserved